HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD · BEDFORD, OHIO 44146-4493 · 216 / 232-9400

Over Forty Years of Quality Products and Services

26 August, 1996

Mr. Paul Rath Custom Chemical Engineering P.O. Box 3191 Springfield, IL 62708

Dear Mr. Rath:

This letter is to inform you, according to 40 CFR 264.12(b), that Hukill Chemical Corporation has the appropriate permits for, and will accept, your waste materials identified below. Additionally, Hukill Chemical Corporation has the capacity to accept your waste material to recycle for solvent recovery and/or for fuels processing. We assure proper disposal of the waste material according to U.S. EPA and state regulations.

<u>GENERATOR</u>	WASTE STREAM	APPROVAL CODE
Reglas Painting Co., Inc.	Earth Scrapings	#5095
	Dust Collector Filters	#5096
	Blasting Shot	#5097

Please refer to the approval code on all correspondence, shipping documents and when placing orders. We also request you stencil or label the approval code on the top of all drums when shipping.

A copy of this information must be kept with your permanent waste stream files. Should you have any questions, please do not hesitate to call.

Very truly yours,

HUKILL CHEMICAL CORPORATION

John C. Hukill Sales Manager

JCH:tlp enclosures

sales\accept\003646

COMPLIANCE WITH RCRA ORGANIC AIR EMISSION STANDARDS

General Description

The standards for process vents and equipment leaks were effective on 12/21/90. The Final Rule is found in the June 21, 1990 Federal Register. One of the requirements of the rule is that certain information be placed in the Hukill Chemical Corporation (HCC) facility operating records while they are on Interim Status. This has been done.

The HCC facility has two process vents as defined by this rule. The location of these process vents is shown on the plot plan found in the appendix of this section and labeled Figure D-12.

The fractional distillation operation, referred to as the Batch Distillation Unit, has one vent where the system can vent to the atmosphere through a vent tank equipped with a conservation vent. Refer to Figure D-13 for a diagram of this system's vent and sampling point, labeled "Batch Still Vent".

The second process vent is the combined vent for the two Luwa thin film evaporators. These units are operated under vacuum. Each Luwa unit is equipped with a vacuum pump which exhausts into a header system where the emissions from both units are combined. The knock-out drum for the combined Luwa vent is also equipped with a conservation vent. Figure D-13 provides a diagram of this vent system and the sampling point, labeled "Luwas' Vent".

The feed streams for the distillation units are usually 95 to 100 percent organics. Both of the process vents are subject to the regulation since the streams contain more than 10 ppmw organics. These organics are usually comprised of more than 20 percent "light liquids", defined as having a vapor pressure of more than 0.3 kPa (0.04 psig) at 68 deg. F and in the liquid state at operating temperature.

The total organic emissions from these process vents are below 3 pounds per hour and 3.1 tons per year.

The pumps, valves and lines used at HCC for hazardous waste transfer are all in light liquid service. The plot plan found in the appendix to this section and labeled Figure D-12 shows the location of the hazardous waste processing units. The identification of the pumps and valves are provided on the "Leak Detection Monitoring Data Sheet" included in the appendix to this section and labeled Exhibit D-16.

HCC does not use purged seal pumps as they have not been proven to be satisfactory for use with our hazardous waste. The use of double valve systems for HCC's hazardous wastes is not considered safe because some of the wastes contain water which may freeze and, when trapped between two valves, may cause the valves to leak or the pipes to burst.

Open ended lines or valves are capped when not in use.

Inspection and Monitoring

The Inspection Check List, included in Appendix A of HCC's Part B Permit application, provides for the daily inspection of pumps, valves and lines used in the transfer of liquid hazardous waste. As discussed below, the pumps are monitored on a monthly basis, using Reference Method 21 found in 40 CFR Part 60, for organic emissions. Valves are monitored on a monthly, or quarterly basis, using Reference Method 21, if no leaks are detected for two successive months as allowed in 40 CFR Part 264.1057(c)(1).

HCC has installed a low cooling water flow alarm for the Batch Distillation Unit to mitigate the effects of a cooling water line rupture, cooling water pump failure or power outage. HCC has also installed an adjustable high temperature sensor for the Batch Still which is located in the vent line above the condenser. The set point is set for a temperature, below the vapor temperature of the solvent being taken overhead, when the Batch Still is charged. If the temperature in the vent line reaches the set point, an alarm sounds in the operating area and the Lab. Since the set point is below the vapor temperature of the solvent, there should be enough response time to take the proper actions, usually shutting off the steam to the reboiler, before there is any air emission.

The Luwa thin film evaporator units shut down when the power is interrupted. These units are under vacuum from electric operated vacuum pumps and are fed the hazardous waste by electric motor driven pumps. When the power is shut off, the conditions for creating a vent emission are eliminated since vapor must pass through the vacuum pump to get to the vent and the temperature of the unit is below the atmospheric boiling point of the solvent.

Personnel training in the safe handling of hazardous wastes and in the proper use of personal protective equipment is ongoing at HCC to prevent exposure to hazardous wastes. Please refer to Section H "Personnel Training" in the HCC Part B for details.

The above described equipment for mitigating the effects of equipment failure and power outage also prevent releases to the atmosphere.

Records including the Process Vent test data and Equipment Leak Detection Monitoring Data are maintained in the facility operating record for a minimum of three years.

Process Vents

Vent Emissions - Batch Distillation Unit

The Batch Distillation unit was tested on 12/13/90 by Envisage Environmental, Inc. The unit was into the Xylene cut with only a small amount of Isopropyl Alcohol in the product. No vapor flow was detected using first, the 250 cubic feet per hour capacity gas flow meter and, as a check, a more sensitive pitot tube flow instrument. Consequently, no samples of the vent emission could be obtained. The report from Envisage Environmental, Inc. is found in the appendix to this section and labeled Exhibit D-13.

EXHIBIT D-17, "STAFF QUALIFICATIONS AND CORPORATE REFERENCES" PROVIDES THE CONTRACTOR'S CREDENTIALS FOR ENVISAGE ENVIRONMENTAL, INC. EXHIBIT D-18 PROVIDES THE CALIBRATION DATA AND THE EQUIPMENT DESCRIPTION FOR THE GAS FLOW METER.

It was determined that another vent emission test should be run during warm weather and while the unit was processing organics containing methylene chloride, the solvent with the highest vapor pressure of those solvents processed in this unit. This test was conducted by Envisage Environmental, Inc. on 9/13/91. THE BATCH DISTILLATION SYSTEM WAS OPERATING AT FULL CAPACITY FOR THIS MATERIAL WHEN THE TEST WAS CONDUCTED. The results of this test are included in the appendix to this section and labeled Exhibit D-14. The results of this test indicated that no organic emission was detected during normal operations. The steam was increased by 25 percent after the test as a check on the system and to indicate the response time available to correct an upset condition. As shown in the report, the temperature and flow in the vent increased within forty-five minutes.

AS INDICATED IN THE TEST REPORT, EXHIBIT D-14, THE SYSTEM HAD BEEN RUNNING FOR THREE HOURS PRIOR TO THE TEST AND NO GAS FLOW WAS DETECTED BY THE METER DURING THE TEST. THE INCREASE IN STEAM PRESSURE RESULTING IN FLOW THROUGH THE METER SHOWED THAT IT WOULD DETECT GAS FLOW. THE GAS FLOW METER IS SENSITIVE TO A .005 CUBIC FEET GAS FLOW VOLUME. ALSO, THE FACT THAT THE T-8 THERMOCOUPLE, LOCATED ABOVE THE CONDENSER, RECORDED 70 DEGREES F DURING THE TEST AND 95 DEGREES F AFTER THE STEAM WAS INCREASED INDICATES THE DISTILLATION SYSTEM WAS OPERATING AT FULL CAPACITY AND VAPOR WAS CONDENSED DURING THE TEST PERIOD.

Note that for the above tests, one of the conservation vents was removed to install the vent flow and sampling equipment. The other two Vent Tank conservation vents, on the same manifold line, were closed during the test period. Vent emissions would be more likely to occur with the conservation vent removed than during normal operation where emissions would be reduced by the conservation vents.

The estimated annual distillation time for this unit is based on scheduled operation of 24 hours a day, six days a week for 50 weeks a year. Distillation time for this unit is 80 percent of scheduled time. This gives an estimated distillation time of 5,760 hours per year.

Vent Emissions - Luwa Distillation Units

The two Luwa thin film evaporator units, LN043 and LN050, are vacuum units. Envisage Environmental, Inc. obtained gas flow meter readings and vent gas samples, using Reference Method 18 found in 40 CFR Part 60, on three separate test runs while both units were in operation on 12/13/90. The test report is found in the appendix to this section and labeled Exhibit D-13.

THE LUWA UNITS WERE RUNNING AT FULL CAPACITY FOR THOSE HAZARDOUS WASTE STREAMS. THE OPERATING RATE VARIES DEPENDING ON THE COMPOSITION OF THE WASTE STREAM. THE WASTE STREAMS, CUSTOMER STREAM CODES A-19 AND S-57, ARE REPRESENTATIVE OF 80 TO 90 PERCENT OF THE FEED MATERIAL FOR THE LUWA UNITS AND DESCRIBED AS LACQUER THINNER. ACETONE IS THE MOST VOLATILE MATERIAL IN THIS FEED AND RANGED FROM 31 TO 32 PERCENT AND .5 TO 1.5 PERCENT IN THE RESPECTIVE LN-043 AND LN-050 FEED STREAMS. WASTE STREAMS CONTAINING METHYLENE CHLORIDE ARE ESTIMATED AT LESS THAN 5 PERCENT OF THE FEED TO THE LUWA UNITS.

THE DESCRIPTION AND CALIBRATION DATA FOR THE GAS FLOW METER USED IN TESTING THE LUWA UNITS IS INCLUDED AS EXHIBIT 18. IT IS THE SAME MODEL AND OF THE SAME PRECISION AS THE METER USED FOR THE BATCH DISTILLATION UNIT TESTS.

Note that for the above tests the conservation vent was removed to install the vent flow and sampling equipment. Vent emissions would be more likely to occur with the conservation vent removed than during normal operation where any emission would be reduced by the conservation vent.

The estimated annual distillation time for the Luwa units is based on scheduled operation of 24 hours a day, six days a week for 50 weeks a year. Distillation time for these units is 75 percent of scheduled time. This gives an estimated distillation time of 5,400 hours per year.

The emission from this process vent is based on the average organic emissions for three one-hour runs of 0.6741 pounds per hour calculated from the Envisage Environmental, Inc. test report data. The hourly emission from this process vent is 0.6741 pounds per hour. The calculated annual organic emission from this vent, based on the 5,400 hours per year distillation time, is 1.82 tons per year.

Based on the above information, the organic total organic air emissions from all affected process vents at the HCC facility are

below the 3 pounds per hour and 3.1 tons per year level and in compliance with 40 CFR Part 264.1032(a)(1). Therefore, HCC is not required to provide additional control devices to further reduce process vent emissions at this facility.

Equipment

HCC will use the "monthly leak detection and repair" method for complying with the Equipment Leak regulations. All the waste streams are in light liquid service and expected to have 10 percent or more organics. Reference Method 21 found in 40 CFR Part 60 is used to detect leaks.

The initial monitoring was done by Envisage Environmental, Inc. on 12/13/90. The HCC Process Engineer observed the equipment leak testing and identified the equipment and the hazardous waste streams. The Process Engineer completed the "Leak Detection Monitoring Data Sheet". Copies of the three data sheets used for this monitoring are found in the appendix to this section and labeled Exhibit D-16.

EXHIBIT D-17, "STAFF QUALIFICATIONS AND CORPORATE REFERENCES" PROVIDES THE CONTRACTOR'S CREDENTIALS FOR ENVISAGE ENVIRONMENTAL, INC. EXHIBIT D-19 PROVIDES THE EQUIPMENT DESCRIPTION FOR THE FOXBORO ORGANIC VAPOR ANALYZER MODEL 108 MONITORING EQUIPMENT, THE CALIBRATION GAS ANALYSIS CERTIFICATION AND A DESCRIPTION OF THE "QUALITY ASSURANCE/QUALITY CONTROL" METHOD FOR ASSURING ACCURACY OF THE METER.

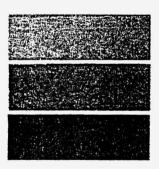
Note that the range of the organic detection meter was 0 to 1,000 ppm. The scale on this meter did not go to 10,000 ppm, the concentration that constitutes a "leak." All the test results were within this range. Subsequent testing was done with a meter of the prescribed test range of 0 to 10,000 ppm.

A "Leak Detection Monitoring Data Sheet", found in the appendix to this section and labeled Exhibit D-16, was printed and is used for the monthly leak detection testing.

Exhibit D-15 is a copy of a completed monitoring data sheet. THE COLUMN LABELED "COMPONENT" CONTAINS THE EQUIPMENT IDENTIFICATION NUMBER. THIS IS THE SAME NUMBER AS FOUND IN TABLE D-3 UNDER THE COLUMN HEADING OF "EQUIPMENT I.D. NUMBER".

THE COLUMN HEADING "PROCESS STREAM" IS THE HCC INTERNAL IDENTIFICATION CODE FOR A CUSTOMER'S SPECIFIC WASTE STREAM. A WASTE STREAM IS DEFINED AS THE HAZARDOUS WASTE FROM A SPECIFIC PROCESS OR OPERATION AT THE CUSTOMER'S FACILITY. A CUSTOMER MAY HAVE MORE THAN ONE WASTE STREAM GENERATED AT A FACILITY. EACH STREAM WOULD BE GIVEN AN INDIVIDUAL WASTE STREAM IDENTIFICATION CODE. SAMPLE ANALYSES AND PROCESS DATA FOR EACH WASTE STREAM ARE FILED UNDER THIS CODE.

The identification and location of the equipment is indicated on the data sheet. The data sheet locations are identified on the plot plan, found in the appendix to this section and labeled Figure D-12. TABLE D-3 PROVIDES A LIST AND DESCRIPTION OF THE EQUIPMENT AT EACH LOCATION SHOWN ON THE PLOT PLAN, FIGURE D-12.


THE PROCEDURE FOR DETECTING LEAKS BASED ON CONCENTRATION, 40 CFR PART 60, APPENDIX A, METHOD 21, 4.3.1, IS USED SINCE ALL THE EQUIPMENT IS ACCESSIBLE WITH THE FOXBORO OVA 108 PROBE.

The "Leak Detection Monitoring Data Sheets" are kept in the facility operating records for a minimum of three years.

If a leak is detected and not repaired within the prescribed time, it will be reported to the Regional Administrator for that semiannual reporting period as required by 40 CFR Part 264.1065.

SOURCE, EVALUATION RESULTS

PREPARED BY

Envisage Environmental Incorporated

P.O.Box 152 Richfield, Ohio 44286 Phone (216) 526-0990

Envisage Environmental Incorporated P.O. Box 152 Richfield, Ohio 44286 Phone (216) 526-0990

January 7, 1991

Mr. Ed Price Hukill Chemical Company 7013 Krick road Bedford, Ohio 44146

Dear Mr. Price:

The following report is the result of the EPA Methods 18, Measurement of Organic Compounds, and Method 21, Determination of Volatile Organic Compound Leaks. Testing was conducted at the above location on December 13, 1990.

The results are true and accurate to the degree specified in the pertinent section of the <u>Code of Federal Regulations</u> in force at the time of testing concerning the above test methods.

I look forward to answering any questions you may have and assisting you in the future.

Respectfully submitted,

Frank J. Hezoucky

Environmental Project supervisor

ENVISAGE ENVIRONMENTAL INCORPORATED

TABLE OF CONTENTS

PAGE

Description of Program			3
Test Results			
Summary			5
Detailed	·		7
Laboratory Section	9	-	10
Summary Method 21	12	_	23
Sampling Nomenclature	44	_	46

DESCRIPTION OF PROGRAM

DESCRIPTION OF PROGRAM

On December 13, 1990 Envisage Environmental Inc. Conducted an EPA method 18 Measurement of Organic Compounds on the exhaust of the LUWA machine. Three test runs were conducted on this date each run lasting one hour. Testing consisted of drawing the exhaust gases from the LUWA through a charcoal tube with a personal sampling pump. The organic components caught on the charcoal were analyzed by gas chromatography (GC). Before and after each sample run flow rates were taken, enabling the emission rate of Volatile Organic Compounds to be calculated. This was done using EPA Method 2A, Direct Measurement of Gas Volume Through Pipes and Small Ducts.

The second phase of testing conducted on December 13, 1990 consisted of EPA Method 21 Determination of Volatile Organic Compounds leaks. This was done by using a Foxboro Portable Flame Ionization Analyzer calibrated to 100 ppm of methane. Testing was conducted on the various process equipment, valves, flanges and other connections throughout the plant.

Emission testing was determined pointless on the Still Line exhaust due to the unmeasurable flow rate of the unit.

TEST RESULTS SUMMARY

TEST RESULTS SUMMARY

Hukill Chemical Company 7013 Krick Road Bedford, Ohio LUWA Exhaust

Volitile Organic Compound Emissions

Conducted - December 13, 1990

PARAMETER	RUN # 1	RUN # 2	RUN # 3
Total Volitile Organic Compounds Pounds/hour	0.6262	0.6808	0.7152
Ethanol Emissions Pounds/hour	0.0078	0.0169	0.0171
Methyl Ethyl Keytone Emissions Pounds/hour	0.0001	0.0126	0.0108
Ethyl Acetate Emissions Pounds/hour	0.0087	0.0126	0.0124
Toluene Emissions Pounds/hour	< 1.59E-06	4.79E-04	3.75E-04
N-Butyl Acetate Emissions Pounds/hour	< 3.52E-06	1.15E-05	8.93E-06
Xylene Emissions Pounds/hour	< 3.52E-06	1.15E-05	8.93E-06
Acetone Emissions Pounds/hour	0.2247	0.3504	0.3901
Methyl Isobutyl Keytone Emissions Pounds/hour	< 2.77E-06	1.06E-05	9.82E-06
rest as Hexane Emissions Pounds/hour	0.3849	0.2883	0.2847

< DENOTES BELOW DETECTIBLE LIMIT
* NOT included in total lb/hr Volitile Organic Compounds</pre>

TEST RESULTS

Hukill Chemical

LUWA Exhaust

Volitile Organic Compound Emissions

DATE:	December 13, 1990	Symbol	Units	RUN # 1	RUN # 2	RUN # 3
Ti	me of Day			1038 1138	1146 1246	1250 1350
1 Pu	mp Volume-dry,std.	Pvstd	cu. ft.	0.2440	0.2474	0.2464
2 F1	ue Gas Volume-Std.	SCFM	cu. ft.	1.5470	1.6592	1.6630
1	Ethanol - Concentration - Rate	Cs E	gr/dscf lb/hr	0.586 0.0078	1.191 0.0169	1.202 0.0171
2	Methyl Ethyl Keyto - Concentration - Rate	ne Cs E	gr/dscf lb/hr	0.130 0.0001	1.212 0.0126	1.124 0.0108
3	Ethyl Acetate - Concentration - Rate	Cs E	gr/dscf lb/hr	0.653 0.0087	0.885 0.0126	0.870 0.0124
4	Toluene - Concentration - Rate	Cs E		< 0.00012 < 1.59E-06	0.034 4.79E-04	0.026 3.75E-04
5	N-Butyl Acetate - Concentration - Rate	Cs E		< 0.00027 < 3.52E-06	0.00081 1.15E-05	0.00063 8.93E-06
6	Xylene - Concentration - Rate	Cs E		< 0.00027 < 3.52E-06	0.00081 1.15E-05	0.00063 8.93E-06
7	Acetone - Concentration - Rate	.Cs E	gr/dscf lb/hr	16.948 0.2247	24.636 0.3504	27.364 0.3901
8	Methyl Isobutyl Ke - Concentration - Rate	ytone Cs E		< 0.00021 < 2.77E-06	0.00075 1.06E-05	0.00069 9.82E-06
9	rest as Hexane - Concentration - Rate	Cs E	gr/dscf lb/hr	29.02689 0.3849	20.27016 0.2883	19.97520 0.2847
	< DENOTES BELOW DET	ECTIBLE	LIMIT			

< DENOTES BELOW DETECTIBLE LIMIT

LABORATORY SECTION

TIVIA Thermo Analytical Inc.

MA/ERG

777 Exchange Street Sleveland, OH 44125-3337

(216) 447-0790

Envisage Environmental PO Box 152 Richfield, Ohio 44256

Attn: Mr. Tom Holder

Date Collected: Unknown Date Received: 12/17/90

JAN 7 1991

Date: January 2, 1991

TMA ID: 8865:01-08 CLIENT ID: 90-1789-2312

PARAMETER (Large Tubes)	RUN	#1	RUN	#2	RUN	#3	RUN	#4
	Front	Back	Front	Back	Front	Back	Front	Back
Ethanol	4.7	0.66	13	1.8	13	1.9	ND	Back ND
Methyl Ethyl Ketone	1.8	0.17	17	1.7	16	1.7	ND	ND
Ethyl Acetate	8.6	0.87	12	1.2	12	1.3	ND	ND
Toluene	<0.0019	<0.0019	0.54	<0.0019	0.42	<0.0019	ND	ND
N-Butyl Acetate	<0.0042	<0.0042	0.013	<0.0042	0.010	<0.0042	ND	ND
Xylene	<0.0019	<0.0019	0.0050	<0.0019	0.0040	<0.0019	ND	ND
Acetone	150	20	210	29	250	36	ND	ND
Methyl Isobutyl Ketone	<0.0033	<0.0033	0.012	<0.0033	0.011	<0.0033	ND	ND
Rest as Hexane	300	36	220	26	210	29	ND	ND

PARAMETER (Small Tubes)	RUN	<u>#1</u>	RUN	#2	RUN	#3	RUN	#4
	Front	Back	Front	Back	Front	Back	Front	Back
Ethano1	2.5	1.4	3.2	1.1	2.9	1.4	ND	ND
Methyl Ethyl Ketone	0.060	0.029	0.56	0.17	0.20	0.057	ND	ND
Ethyl Acetate	0.62	0.23	0.74	0.25	0.47	0.12	ND	ND
Toluene	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	ND	ND
N-Butyl Acetate	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	ND	ND
Xylene	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	<0.0019	ND	ND
Acetone	64	34	110	46	100	51	ND	ND
Methyl Isobutyl Ketone	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	ND	ND
Rest as Hexane	81	42	53	26	54	26	ND	ND

Results reported in milligrams ND = non-detectable.

pproved by: Junas Jemanus

LABORATORY SUMMARY SHEET Hukill Chemical

LUWA Exhaust

Volitile Organic Compound Emissions

DA	TE: December 13, 1990						
1	Sampling Time	Symbol	Uni		RUN # 1	RUN # 2	RUN # 3
2		t	min	utes	60.0	60.0	
	Barometric Pressure	РЬ	in.	Hg	29.45	29.45	
3	Sample Pump Volume	Pv	cu.	ft	0.2390		29.45
4	Pump Temperature					0.2390	0.2390
		τ	degre		49.0	42.0	44.0
5	Stack Temperature	Tm	degre		509.0	502.0	504.0
	- Simper dedite	_	degree		48.0	48.0	47.0
6	Sample Weight:	Ts	degree	s R	508.0	508.0	507.0
	•	Mn			¥		
	- Ethanol		mg		9.26	19.10	10.00
	- Methyl Ethyl Keyto	one	mg		2.06		19.20
	- Ethyl Acetate		_			19.43	17.96
÷	- Toluene		mg		10.32	14.19	13.89
	- N-Butyl Acetate		mg	<	0.0019	0.54	0.42
			mg	<	0.0042	0.013	0.010
	- Xylene		mg	<	0.0019	0.0050	
	- Acetone		mg				0.0040
	- Methyl Isobutyl Key	/tono			268.0	395.0	437.0
	- rest as Hexane	cone	mg	<	0.0033	0.0120	0.0110
			mg		459.0	325.0	319.0
	< DENOTES BELOW DETECT	IBLE LIM	ΙΤ				-13.0

EPA METHOD 21 SUMMARY

EPA METHOD 21
COMPANY Hukill Chunical
CALIBRATED TO TYPE GAS 17. Arthore
CONCENTRATION
Values dip pan
,
source concentration feeking 450 pm (backglaund 40ppn) en shaft drive.
Scale 0-1000 pp.n
RESPONSE ON OVA: Fluctations du to dents. NOTES DUQ GNalyzed on Shoft Cover. Concentration cycles botween 100 and 250 ffm. Concentrations also Cycles botween 300 and 400 ppm. GMAGE Dona were shot to CM
botween 100 and 250 ffm. Concentrations 9150 Cycles
John rosistant from wind.
Deip pan helow shaft pegged the instant over 1000pm.
Volves - 60 - 80ppm #110 \$ #117
Behind pump against vall - 100ppm
Deningate by pany - 120-140 ppm

... [...] <u>.</u>..

EPA METHOD 21 COMPANY Huk!
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE New Luwa System, Bottons Pumpaul Fulls Valves,
SOURCE CONCENTRATION
response on ova
NOTES

EPA METHOD 21
COMPANY HUKIL
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE ENST Hazarian Weste Dyki
SOURCE CONCENTRATION On holy background Gorm
5(ale 0-10 ppm
RESPONSE ON OVA
NOTES
V-114: Travle value oppor V-614 = Time value 5.4pm
Pung Value dem V-120 = Trick vale 7.00000
V-214: Tank Valve 720m
Pung Valve 722m Fard Valve in Dock - 18 (Some as budgerred
V-514: Topol ville 5,400m
Ping Value 5. Z pp.m V-4/4: Trank value 6 8 pp.m
V-4/4: Trank valve 6 8 pp.m. Pung valve 6.0.97m Pung valve 1.0.7m Pung valve 1.0.7m
V-4000 : 5.2 pm

COMPANY HV//
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE Civinisting Pump Lot Values
· · · · · · · · · · · · · · · · · · ·
BACKGround 1897m
0-100 ppm Stall
RESPONSE ON OVA
NOTES V-112 valve - 1800m. V-177 : Valves 16-20 pm
Pumpi 400 pm - bidgen (yeling azound primp
Com-Lock Fifting - 18 pm
Wast Feed - 1922m EAST FEED TANK-1822m
TRANSFER PHMP - 200 -> 300 pm (Shuft w/ drip TAUK)

	EPA METHOD 21
DESCRIPTION OF SOURCE Track on a -> South Hiszardons Woode Dyk SOURCE CONCENTRATION 6-100 SCALL BACK ground 1077 RESPONSE ON OVA NOTES V-LOD VAlves V-110 Valves V-210 Valves V-175 Valves all Showed background levels of	COMPANY //u ki//
DESCRIPTION OF SOURCE TANK ON A South Hiszaidens Wade Dyk SOURCE CONCENTRATION 6-100 SCALL BACK ground 107700 RESPONSE ON OVA NOTES V-100 Valves V-110 Valves V-210 Valves V-175 Valves all Showed background levels of	CALIBRATED TO TYPE GAS
SOURCE CONCENTRATION 6-/00 scale Britgsonad /03/m RESPONSE ON OVA NOTES V-LODO Valves V-110 Valves V-210 Valves V-175 Valves W-175 Valves	CONCENTRATION
C-100 scale BACK ground 1022m RESPONSE ON OVA NOTES V-LOOD Valves V-110 Valves V-210 Valves V-175 Valves all Showed background levels of	DESCRIPTION OF SOURCE TANK man -> South Huzuidens Waste Dyk
C-100 scale BACK ground 1022m RESPONSE ON OVA	
NOTES V-LOW Valves V-110 Valves V-175 Valves all Should buckground levels of	
RESPONSE ON OVA NOTES V-LOD Valves V-110 Valves V-210 Valves V-175 Valves all showed but ground levels of	SOURCE CONCENTRATION
NOTES V-LOO Valves V-110 Valves V-210 Valves V-175 Valves all showed but ground levels of	0-100 scale Brick grand 1079m
V-110 Valves V-175 Valves all showed buckground levels of	RESPONSE ON OVA
V-210 Valves V-175 valves all showed buckground levels of	
V-175 valves all showed buckground levels of	
) 0 f/m	V-175 valves all showed buckground levels of

EPA METHOD 21
COMPANY (twill
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE Distillation le-boiler
SOURCE CONCENTRATION
·
0-100 scale Background 18 pm
RESPONSE ON OVA
NOTES
Sandi Valve ad End: 30 pm -30 pm
Return Valve : 20-22 mm
LOAD Valve : 3500000 30-400000 0 - 100 schie
Sample Valve and End: 30 pm -30 pm Return Valve: 20-22 ppm LOAD Valve: 3500 pm 0-100 school Distill Lid: 150 pm 0-1000 scale

EPA METHOD 21
COMPANY Hukill
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE
New LAWA Feed and & RANGET TANK
New Luwa Feed purp. & BACKWish TANK Old Luwa Feed purp.
of both party
SOURCE CONCENTRATION
Brockground 40 ppm
·
RESPONSE ON OVA
NECTORIES ON CVI.
Nompo
NOTES
Shaff: 40-60pm Valves: 40 ppm
VAIVES ? 40 pom
BACKWASH TANKVent: 100-200pm.
Valves 40ggm
·
Old LWWA Feed pup = 20 - 49pm
Old English Later Land 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

EPA METHOD 21
COMPANY Hukill
CALIBRATED TO TYPE GAS
CONCENTRATION Lecture Feed lines
DESCRIPTION OF SOURCE
Phoenii i on booneh
·
SOURCE CONCENTRATION
Buddgeond 40 ppm
RESPONSE ON OVA
NOTES
Reclaim Feed Lines (6)
all showed worm - 40ppm.
V-1:000
V-4000
EAST & West Feed
A110
V40
УДО

EPA METHOD 21
COMPANY Hukill
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE V-110 Ford line of fum. 7.
DRUM PROLUTSSING MELV
COURCE CONCENTRATION
SOURCE CONCENTRATION
Background 40,200
0-1000 sale
<u>0-7000 \$@Q</u>
RESPONSE ON OVA
NOTES Valves to phys Valves 1 Coopen Valves 2 Coppn Valves 3 45 pm Valve 4 40 pm
Valves 1 Goggm
Valves 2 Govern
Valves 3 45 cem
Valve 4 40 psh
Surple Valve 4000m
Valve 5 Eggm
Dayor S Confirm
Share Tank = greater than lowgon
- MAN TANK = a) thick individually

EPA MET	
COMPANY	Hukill
CALIBRA	TED TO TYPE GAS
CONCENT	RATION
DESCRIP	TION OF SOURCE TANK 502, f.C.b
•	
•	
-	· ·
	CONCENTRATION
0-10	U Scali
-2	A
BACKAR	ounds 14pm
J	"
RESPONS	E ON OVA
NOTES	
#504 Roftom	Valves, Compartments 1-5
Lending.	s were some as background
Hoa Como	artmets 1-3, Lotton Valves
	
Bwk	geound reading
	7
-	

EPA METHOD 21	* [*] -
COMPANY Hukil	
CALIBRATED TO TYPE GAS	
CONCENTRATION	
DESCRIPTION OF SOURCE fum? form	· · · · · · · · · · · · · · · · · · ·
•	
COURCE CONCENTED MADY	
SOURCE CONCENTRATION	
12 -10: 6: 6	
0-100 Scoli	
Copper background	
RESPONSE ON OVA	
NOTES 0-100 Scale	
Ribsilyi Feed Line > 1000 ppm	· · · · · · · · · · · · · · · · · · ·
LUWA Feed 700-4202pm	
Flush TANK 500-6000001	
Floor Grating 200-400 ppm	
J I'	
	÷

EPA METHOD 21
COMPANY
CALIBRATED TO TYPE GAS
CONCENTRATION
DESCRIPTION OF SOURCE LUMERATORY
SOURCE CONCENTRATION
20 ppm brekground
· · · · · · · · · · · · · · · · · · ·
RESPONSE ON OVA
NOTES
Acetone WASH built
- checked Around lips: backjeound => 71000ppm
- tresept morado ins properties and 25 mosephin
Waste barrell Slovogem.

EMISSIONS SAMPLING NOMENCLATURE

Emissions Sampling Nomenclature - continued

- M = Molecular weight of water, 18 lb/lb-mole.
- P_{har} = Barometric Pressure, in. Hg.
- P = Pressure differential from gas stream to atmosphere, (static pressure) in.H₂0.
- P_s = Absolute gas stream pressure, $(P_{bar} + P_g/13.6)$ in.Hg.
- P = Absolute pressure at standard conditions, 29.92 in. Hg.
- P_{\perp} = Density of water, 0.0022 lb/ml.
- $^{P}_{avg} = Average of the square roots of the velocity head readings, <math>(\sqrt{^{n}p})$ (in.H 0₂).
- Q = Volumetric flow rate at gas stream conditions, A.C.F.M.
- Q = Dry volumetric gas flow rate corrected to standard conditions, S.C.F.M.
- R = Ideal gas constant, 21.85 in. $Hg-ft^3/OR-1b-mole$.
- t = Total sampling time, minutes.
- T_ = Average dry gas meter temperature, OR.
- T_s = Average absolute gas stream temperature, ${}^{\circ}R$.
- T_{std} = Standard absolute temperature, 528⁰ Rankine.
- V = Volume of water collected in impingers & silica gel, ml.

Envisage Environmental Incorporated P.O. Box 152 Richfield, Ohio 44286 Phone (216) 526-0990

September 18, 1991

Mr. Ed Price Hukill Chemical Company 7013 Krick Road Bedford, Ohio 44146-4493

Dear Mr. Price:

The following report is the result of the air flow evaluation conducted on September 13, 1991 at the above facility. Testing was performed at the Batch Still Vent Tank.

The results are true and accurate to the degree specified in the pertinent sections of the <u>Code of Federal Regulations</u>, in force at the time of testing concerning Direct Measurement of Gas Volumes Through Pipes and Small Ducts.

I am looking forward to answering any questions you may have and assisting you in the future.

Respectfully submitted,

Robert C. Hovan

Project Leader

ENVISAGE ENVIRONMENTAL INC.

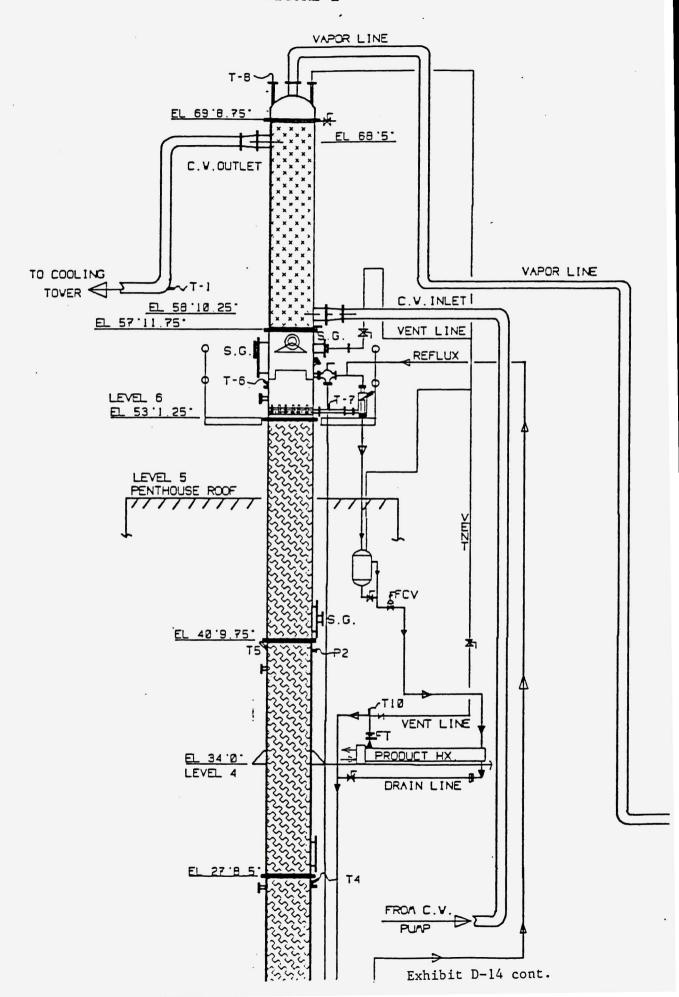
Exhibit D-14

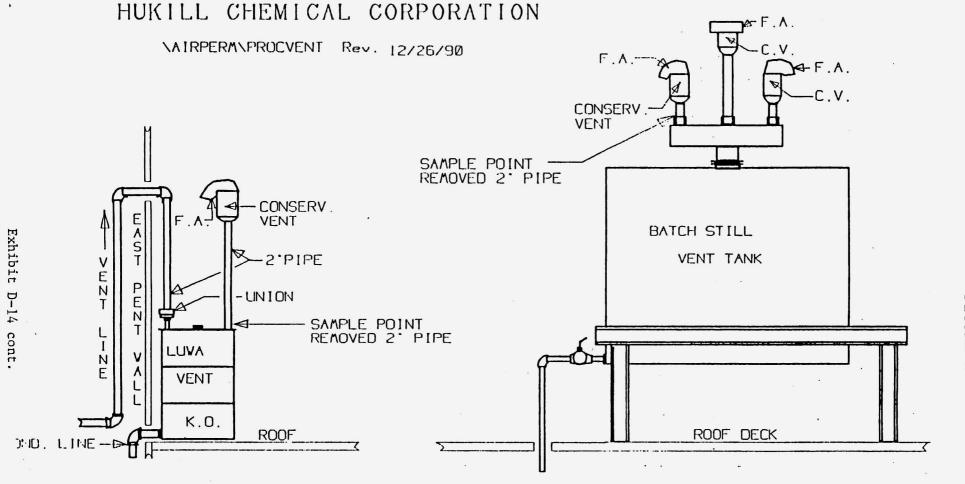
SEP 1 \$ 1691

HUKILL CHEMICAL CORP.

DESCRIPTION OF PROGRAM

On September 13, 1991 Envisage Environmental Inc. conducted EPA Methods 2A, Direct Measurement of Gas Volume Through Pipes and Small Ducts evaluation at the Hukill Chemical facility located in Bedford, Ohio. The purpose of these tests was to determine the Volatile Organic emission rate of the Batch Still Vent Tank.


The Envisage testing team consisted of Messrs. Robert Hovan, and Mark Geirke. Mr. Ed Price, Hukill Chemical, coordinated the testing.


The testing was performed at one of the three conservation vents (figure 2) while the other two vents were capped shut. The initial run consisted of operating the Distillation Tower at normal parameters, steam flow 800 lbs/hr at 70 degrees fahrenheit. The temperature is recorded at thermocouple #8 (T-8) (figure 1) at the top of the distillation tower. The process was operating at these conditions for three hours prior to conducting run #1. The dry gas meter was set up and monitored for one hour. There was no recordable flow during this time period (9:45am - 10:45am).

The second run (11:00am - 11:45am) consisted of increasing the steam loading by 25% to find a process point where venting from the Batch Still Vent Tank would occur. The parameters for the second run were a steam flow of 1009 lbs/hr at a T - 8 temperature of 95 degrees fahrenheit. At these conditions, the Batch Still Tank exhibited a flow rate of 0.3 cubic feet/minute after approximately 45 minutes.

Exhibit D-14 cont.

LUWAS: VENT

BATCH STILL VENT

EST LOCATIONS FOR COMPLIANCE WITH ORGANIC AIR EMISSION REGS

DISTILLATION TOWE DITTROL SHEET

DATE: G-13.91 CUSTOMER CODE: K-17 J.O. . 13237 MATERIAL: MESS

MIL.	STM.	STM.	IN	OUT	RET	POT	YAP					B.O.	RFX	PRD	POT			REFX. FLOW	PROD.	REMARKS:
TIME	FLOW	PRES	W-1	W-2	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	PRS	P-1	P-2	FLOW	FLOW	O.H./POT %,2-PHASE,
range	4000	130	0-7	200	L)-35(00-3	00		30			0-50		The state of the s
units	#/HR.	PSI				,			AHRE		_				PSI	INCH.	S H20	Gals.	/Min.	ECT
4=	5	TGA-	,	5 N	Ta	rol_		430	b EFL	υ× .	Ping	OR)	500	74 1	0 V-2	9.55			
600	781	78	64	72	155	107	99	96	86	95		78		65	_	8	0	12	20	91-82 % MEU2
748	740		63	72	105	109	90	97	90	2100	<100	68	95	68	_	.8	0	67//	2.0 6.0	99.87 Mellz
830 A	787	78	63	72	105	110	90	97	90	900	=100	67	95	68	_	8	0	63/1	6,0	99.87 % McCl2
1030	5.8				105						94		96		-	.7	0	10		99.84 8 Mec/2
114º	6.2	78	68	78	106	118	95	99	92	99	94	95	96	71	-	9	0	11	6:0	- 78 19.85 % Hack
								٠												
										·										
																		n .		
							•	•												
																				% %
																			:	
<u> </u>	J	1	٠					L										I		

D-14

TA SHEET

Instrument	Used for Testing:/-ox 5000	Calib. Gas	1711	T	Outside	Temp. 54/67
	ted by: Bob HOVAN	CGIID: GGS	7			5-10 MM
Fouin. Ident	tified by: MRRK MATTHEWS (朱cc.		TEST	VISIBLE	
		<u> </u>	PROCESS	VALUE	LEAK	**************************************
COMPONENT	LOCATION	EQUIPMENT	STREAM	(ppm)	(Y/N)	COMMENTS
DISTILLATIO	N AREA:	-				······
Room	Distillation Area Background	NA	NA	3.0.	A	***************
PFLN430	Feed Pump	Old Luwa	14-9	30	NO	OKIP PRI
BLN430	Bottoms Pump	Old Luwa	1/1/1	100.	1	
JBLN439A	LN430 Btms. Disch. Line to U110M	Old Luwa	5	35-40	4	
UBL N43 68	LN430 Btms. Disch. Line to U117	Old Luwa		35-40	u	
UBLN43 OC	LN430 Btms. Drain to Drum	Old Luwa		35-40	4	
		1				
PFLN500	Feed Pump	New Luwa	D-32 MIBK.	740-30	NO	<u> </u>
JFLN508	Feed Pump Valve	New Luwa	()	7-0-30	U	
JB₩	Backwash Line Valve	New Luwa	61	20-30	N	DRIF PAN.
BLN5 00	Bottoms Pump	New Luwa	LI	40	N	
JBLN5 88A	LN500 Btms. Disch. Line to V110M	New Luwa	٧,	30	VI	
JBLN5 008	LN500 Btms. Disch. Line to V117	New Luwa	L1	30	N	
JBLN5 0 CC	LN500 Btms. Drain to Drum	New Luwa	61	30	VI	
JFV6000	Valve From V-6000 Tank	Pipe Rack	C F	30	NO	
JFV4000	Valve From V-4000 Tank	Pipe Rack	K-9	30	<i>i</i> 1	
JFEAST	Valve From EAST Feed Tank	Pipe Rack	CF	20	4	
JFWEST	Valve From WEST Feed Tank	Pipe Rack	CF	LC	Ч	
JFU11 OM	Valve From U-116M Tank	Pipe Rack	CF	20	4	
JFU218M	Valve From V-216M Tank	Pipe Rack	C/=	20	Л	
Sump Area	Distillation Area Sump - Pump Area	NA	NA	250.		
	EED AND BOTTOMS STO. TANK DIKES:					
ike Area	Feed/Btms. Tk. Dike Background	NA	NA NA			
WFEED	West Feed Tank Valve	W. Feed Tk.	CF	<:5	140	
EFEED	East Feed Tank Valve	E. Feed Tk.	CF	< 5	().	
AIRPERM\LEA	NCHK Rev. 1\11\91					*

Components to be checked are pump seals, valves, open-ended pipes, relief valves, sample valves.

	·	,			1	
				TEST	UISIBLE	
		<u> </u>	PROCESS	VALUE	LEAK	
COMPONENT	LOCATION	EQUIPMENT	STREAM	(ppm)	(Y/H)	COMMENTS
	4-					
	EED AND BOTTOMS STO. TANK DIKES (Co					
TRANS	East Pad Transfer Pump	Port. Pump	CI	40.	NO	
TRANS	East Pad Transfer Pump-Cam-lock	Trans. Pump	11	30.	11	DRIP PAN
² U117	Circ. Pump on V-117 Bottoms Tank	U-117 Tank	4		1 21	
JDU117	Disch. Value U-117 Tank	V-117 Tank	4		y	
:DU117	Cam-lock on U-117 Disch . Line	U-117 Tank	14	3-	Lı	
. PAD HAZ.	WASTE STORAGE TANK DIKE:					
)ike Area	HW Sto. Tk. Dike - Background	NA	NA	10		
IDU114	HW Storage Tk. U-114	U-114 Tank	D-115R-3	- 5	NO	
DU214	HW Sto.Tk. U-214 Disch. Value	U-214 Tank	14,0	(14	
IDU314	HW Sto. Tk. U-314 Disch Value	V-814 Tank	(+,0	5	4	
IDU414	HW Sto. Tk. U-414 Disch. Value	U-414 Tank	150	<u></u>	<i>L</i> ₁	
IDU514	HW Sto. Tk. U-514 Disch. Ualue	U-514 Tank	SOLVi	Ţ	4	
IDU614	HW Sto. Tk. U-614 Disch Ualue	U-614 Tank	D-31 D5-3	3	4	
IDV120	HW Sto. Tk. U-120 Disch. Ualve	U-120 Tank	W 1/	5	4	
DV4000	HW Sto. Tk. U-4000 Disch. Value	U-4000 Tank	K-9	3	L.	
IAZ. WASTE F	FUELS BLEND TANK DIKE:					
ike Area	HW Fuels Blend Dike - Background	NA	NA	<10	NO	
IDU6809	Fuels Sto. Tk. V-6000 Disch. Valve	U-6000 Tank	MTY	<u> </u>	61	
DU110M	Fuels Sto. Tk. V-118MDisch. Valve	U-119MTank	CF	5/0	7	
DU210H	Fuels Sto. Tk. V-210M Disch. Valve	U-210H Tank	CP	<10	7	
IDU175	Fuels Sto. Tk. U-175 Disch. Valve	V-175 Tank	1= - HMH	<10	~	
TRANS	HW Fuels Transfer Line Valve	Fuels Dike	100	<10	ч	
						~
ATCH DIST.	REBOILER AREA:					
eboiler	Reboiler Area - Background	NA	NA	50		
SMPR	Sample Value - Reboiler	Batch Still	D-31/110K	50	NO	
RETR	Return Valve - Reboiler	Batch Still	88	50	61	
FILLR	Fill Value - Reboiler	Batch Still	V 4	50	7	
HR	Man Hole Cover - Reboiler	Batch Still	114	50	61	
						
AIRPERM\LEA	AKCHK Rev. 1/11/91					

Components to be checked are pump seals, values, open-ended pipes, relief values, sample values.

. . . 1

HUKILL CH

\AIRPERM\LEAKCHK

Rev. 1/11/91

CAL CORP.

Components to be checked are pump seals, values, open-ended pipes, relief values, sample values.

Instrument	Used for Testing:	Calib. Gas		Outside	Temp.	
Inst. Opera	ted by:					
Equip. Iden	tified by:			TEST	UISIBLE	
			PROCESS	VALUE	LEAK	
COMPONENT	LOCATION	EQUIPMENT	STREAM	(ppm)	(Y/N)	COMMENTS
DISTILLATIO	N ARFA:					
Room	Distillation Area Background	NA	NA			
PFLN430	Feed Pump	Old Luwa				······
PBLN430	Bottoms Pump	Old Luwa				
UBLN430A	LN430 Btms. Disch. Line to U110M	Old Luwa				
UBLN430B	LN430 Btms. Disch. Line to U117	Old Luwa				
UBLN43 OC	LN430 Btms. Drain to Drum	Old Luwa				
PFLN500	Feed Pump	New Luwa			-	
UFLN580	Feed Pump Valve	New Luwa			1	
UBw	Backwash Line Valve	New Luwa			-	
PBLN500	Bottoms Pump	New Luwa				
UBLN5 80A	LN500 Btms. Disch. Line to V110M	New Luwa			 	
UBLN5 808	LN500 Btms. Disch. Line to U117	New Luwa		 		
VBLN5 0 OC	LN500 Btms. Drain to Drum	New Luwa				
UFU6000	Valve From V-6000 Tank	Pipe Rack			-	
UFU4080	Value From U-4000 Tank	Pipe Rack			-	
UFEAST	Value From EAST Feed Tank	Pipe Rack			-	
UFWEST	Valve From WEST Feed Tank	Pipe Rack		··		
UFU118M	Valve From V-110M Tank	Pipe Rack				
UFU218M	Valve From U-210M Tank	Pipe Rack				·
Sump Area	Distillation Area Sump - Pump Area	NA	NA			
Sump in ca	DISCILLACION NI CA SUMP TUMP NI CA	114	, in			
	FEED AND BOTTOMS STO. TANK DIKES:					
Dike Area	Feed/Btms. Tk. Dike Background	NA	NA			
PWFEED	West Feed Tank Valve	W. Feed Tk.				
PEFEED	East Feed Tank Valve	E. Feed Tk.				
VOIDBEDMYLE	 AKCHK	 				
/HINLEULI/FE	uveliv ven 1/11/31					

Components to be checked are pump seals, valves, open-ended pipes, relief valves, sample valves.

				TEST	UISIBLE	
			PROCESS	VALUE	LEAK	
COMPONENT	LOCATION	EQUIPMENT	STREAM	(ppm)	(Y/H)	COMMENTS
HAZ. WASTE F	FEED AND BOTTOMS STO. TANK DIKES (Co	nt'd):				
PTRANS	East Pad Transfer Pump	Port. Pump				
CTRANS	East Pad Transfer Pump-Cam-lock	Trans. Pump				
PU117	Circ. Pump on V-117 Bottoms Tank	U-117 Tank				
UDU117	Disch. Valve V-117 Tank	U-117 Tank				
CDU117	Cam-lock on V-117 Disch . Line	U-117 Tank				
E. PAD HAZ.	WASTE STORAGE TANK DIKE:					
Dike Area	HW Sto. Tk. Dike - Background	NA	NA			
UDU114	HW Storage Tk. U-114	U-114 Tank				
UDU214	HW Sto.Tk. U-214 Disch. Value	U-214 Tank				
UDU314	HW Sto. Tk. U-314 Disch Valve	U-314 Tank				
UDU414	HW Sto. Tk. U-414 Disch. Value	U-414 Tank				
UDU514	HW Sto. Tk. U-514 Disch. Value	U-514 Tank				
UDU614	HW Sto. Tk. U-614 Disch Valve	U-614 Tank				
UDU120	HW Sto. Tk. U-120 Disch. Value	U-120 Tank				
UDU4000	HW Sto. Tk. V-4000 Disch. Valve	V-4000 Tank				
HAZ. WASTE F	UELS BLEND TANK DIKE:					
Dike Area	HW Fuels Blend Dike - Background	NA	NA			
UDU6000	Fuels Sto. Tk. U-6000 Disch. Valve	V-6000 Tank				
UDU110M	Fuels Sto. Tk. U-110MDisch. Valve	V-110MTank				
UDU210H	Fuels Sto. Tk. V-210M Disch. Valve	U-210M Tank				
UDU175	Fuels Sto. Tk. U-175 Disch. Valve	V-175 Tank				
UTRANS	HW Fuels Transfer Line Valve	Fuels Dike				
BATCH DIST.	REBOILER AREA:					
Reboiler	Reboiler Area - Background	NA	NA			
USMPR	Sample Value - Reboiler	Batch Still				
URETR	Return Valve - Reboiler	Batch Still				
UFILLR	Fill Value - Reboiler	Batch Still				
MHR	Man Hole Cover - Reboiler	Batch Still	,			
\AIRPERM\LEA	AKCHK Rev. 1/11/91					

Components to be checked are pump seals, values, open-ended pipes, relief values, sample values.

	1		T	TEST	VISIBLE	
			PROCESS	VALUE	LEAK	
COMPONENT	LOCATION	EQUIPMENT	STREAM	(ppm)	(Y/N)	COMMENTS
DRUM PROCESS	SING AREA:					
Area	Drum Proc. Area - Background	NA	NA NA			
UFU110M1	Valve on Trans. Line to V-110M	HW Fuels Line				
UFU118M2	Value on Trans. Line to V-110M	HW Fuels Line				
JFU11 0H 3	Value on Trans. Line to U-110M	HW Fuels Line				
JFU11044	Valve on Trans. Line to V-110M	HW Fuels Line				
USU110M	Valve on Trans. Line to V-110M	HW Fuels Line				
UFU118M5	Valve on Trans. Line to V-110M	HW Fuels Line		,		
PUMP ROOM:						
Area	Pump Room - Background	NA	NA			
UFLUWAS	Valve to Feed Either Luwa	Pump Room				
UFBSTILL	Value to Feed Batch Still	Pump Room				
		4				
						,
		20000000				
AIRPERM\LE	AKCHK Rev. 1/11/91					

STAFF QUALIFICATIONS AND CORPORATE REFERENCES

ENVISAGE ENVIRONMENTAL INCORPORATED PHYSICAL PROPERTIES

Location

Operational Offices:

6940 Miller Road, Brecksville, Ohio 44141

Offices: 3500 sq. ft.

Warehouse & Laboratory: 2500 sq. ft.

Mailing address: P.O. Box 152, Richfield, Ohio 44286

Five (5) incoming phone lines with additional dedicated

Fax line and 800 service.

On-Site/Field Capabilities:

Air Pollution Sources - Performance of Inlet/Outlet concurrent sampling utilizing:

USEPA Reference Methods 1-28

USEPA Reference Methods 101-111

Hazardous Waste Incinerator Test Burns;

Field Work; Laboratory Analysis.

Asbestos Air Monitoring & Management

CEM (Continuous Emission Monitoring)

Instrumentation for the determination of:

Carbon Monoxide

Nitrogen Oxides

Carbon Dioxide

Sulfur Dioxide

Total Hydrocarbons

Oxygen

Nitrogen Dioxide

Volatile Organic

Constituents

Environmental Site Assessments Storage Tank Management Groundwater & Wastewater Sampling Site Remediation

Major Laboratory Support Instrumentation:

Portable Gas Chromatograph (AID) with Flame Ionization Detector

Office Facility:

Automated with IBM Compatible Personal Computer Systems
Portable Personal Computers (IBM compatible)
Portable Canon Bubble Jet Printers
Hewlett Packard Laser Printer Network
Time Sharing with CAD system
Electronic Data Processing & Word Processing
Modeling capabilities

Envisage
Environmental
Incorporated
PO. Box 152 Richfield, Ohio 44286
Phone (216) 526-0990

ORGANIZATIONAL CHART

Board of Directors

Robert S. Anderson, President

Legal	Office Acct.	Source Sampling	Industrial Hygiene	Tank Testing	Regulatory Compliance	Lab
Legal			Office/Accoun	ting	Source Sar	mpling
Dieter ?	Skoch l Cyphert Domanov Zellmer		Audrey Weiss Cynthia Anders Dennis Lucarre Edward Kolega	elli	Frank Hez John Krisa Mark Gier Greg Sinko Steve Norr John Zam Thomas Jo	ak rke ovich ris pino

Industrial Hygiene Tank Mgmt. Services

William C. Nixon Jr.

Robert Hovan

Thomas J. Monito
Charles O. Gibson
Thomas J. Monito
Roland Vogg

Regulatory Compliance Laboratory Services

Thomas J. Monito

Roland Vogg

William C. Nixon Jr.

Robert Hovan

William C. Nixon Jr.

Charles O. Gibson

ENVISAGE ENVIRONMENTAL INCORPORATED LIST OF SIGNIFICANT PROJECTS

Reference Method 5 Development for USEPA in association with Monsanto Inc.

Emission Evaluations for Government Installations at:

Loring Air Force Base, Maine Wright-Patterson AFB, Ohio Rickenbacker ANGB, Ohio Holston Army Ammunitions Plant, Tennessee

General Services Administration, Cleveland, Ohio

Contracts utilizing Envisage services of:

Air Source Evaluations
Water Source Monitoring/Analysis
Hazardous Waste Management
Environmental Assessments/Audits
Solid Waste Disposal Consultation
Industrial Hygiene

Underground Tank Test Management Product Testing/Quality Control

Infrared Thermography

Cleveland Electric Illuminating Company (CEI)

Ohio Edison Company

Aluminum Company of America

UCAR Carbon Products Company

BP Oil Company

TRW

General Electric Corporation

GenCorp

Avery-Fasson

Kennedy Van Saun

Martin Marietta

Marathon Oil

Stone Container Corporation

Clow Water Systems

Goodyear Tire & Rubber

LTV Steel Corporation

Republic Engineered Steel

Packaging Corporation of America

PPG Industries

Elkem Metals

Detrix Chemicals

RMI Extrusions Facility

RMI Sodium Facility

RMI Titanium Facility

RESUME

Robert S. Anderson President Envisage Environmental Inc. 1976 to present

Education

Cleveland State University Bachelor of Science Biological Sciences

USEPA Course 450 - Source Sampling USEPA Course 413 - Control of Particulate Emissions

USEPA Course 474 - Continuous Emission Monitoring

USEPA Course - Air Pollution Equipment and Design

USEPA Course - Continuous Instrumentation

USEPA Certified Smoke Reader

Previous Experience

USEPA Source Sampling Supervisor Ambient Air Monitoring Supervisor Quality Control Supervisor Air Pollution Meteorologist

Current Memberships

Air & Waste Management Assn. Cleveland Engineering Society Water Pollution Control Assn. National Asbestos Council (NAC) American Industrial Hygiene Assn. (AIHA)

- Local and National Chapter

Robert S. Anderson Resume - Page 2

Current Memberships

National Environmental Health Assn. (NEHA)
National Assn. of Environmental Professionals
Greater Cleveland Growth Assn.
Summit County Safety Council
National Environmental Training Assn. (NETA)
Academy of Certified Hazardous Materials Managers

Certifications

Certified Environmental Professional #2011

University of Cincinnati, Institute of Environmental Health:

Safe Methods of Asbestos Removal. Management Planner Training. Building Inspection Procedures.

Comprehensive Review for Industrial Hygiene Professionals, 1986

Certified Hazardous Materials Manager (CHMM)

Recognized by: Who's Who in Environmental Training, 1990-91 Edition

Co-Author - Tuning the Green Machine, Primer for Senate Sub-committee on Environmental Issues, (currently in use).

Graduate of Quantitiative Industrial Hygiene Seminar Conference, University of Colorado, AIHA, Ft. Collins, Colorado.

Graduate of Professional Development Seminar Conference, AIHA/NSC, Orlando, Florida

Past Director - Local Northern Ohio Chapter Air & Waste Management Assn. Currently, Vice Chairman, 1991-92

RESUME

Thomas J. Monito Regulatory Compliance Manager Envisage Environmental Inc. 1988 to present

Education

Pennsylvania State University Bachelor of Science Environmental Resource Mngmt

Previous Experience

Pennsylvania Fish Commission Fisheries Biologist Research Technician Water Quality Lab Technician

Certification/Training

Past USEPA Certified Smoke Reader

University of Cincinnati, Institute of Env. Health -Certified Building Inspection Procedures for Asbestos. Airborne Asbestos Monitoring

University of Cincinnati, Institute of Env. Health -Certified Management Planner for Asbestos.

State of Ohio Dept. of Health-Certified Asbestos Hazard Evaluation Specialist. Recertified - October 1991. Certificate # 31078

Page 2 Thomas J. Monito - resume

Heath Consultants -Certified Petro-tite Tank Testing Systems Operator. Certified for Data Analysis.

Participant SARA Title III & Right to Know Seminar & Workshop, 1989.

University of Toledo -Industrial Wastewater Pretreatment; 1989 -Water Conservation, Resource Recovery, Waste Minimization, Pollution Control.

University of Toledo -Field Monitoring; 1989 -Groundwater Protection, Portable Gas Chromatography, Additional Instrumentation.

American Society of Civil Engineers - Cleveland Section Environmental Liability Associated with Real Estate Property Transfer Actions and Corporate Acquisition Seminar - 1989

Cleveland Engineering Society -The Permitting, Construction & Operation of a Hazardous Waste Incinerator - 1990

Environmental Assessment Assn. Environmental Inspections for Real Estate Transactions - 1991

Page 3 Thomas J. Monito - resume

Certified Environmental Trainer in Hazardous Materials & Waste Management Specialties, by the National Environmental Training Assn. Board of Examiners, November 1990.

<u>Certified Environmental Inspector</u> Environmental Assessment Association

Recognized by: Who's Who in

Environmental Training,

1990-91 Edition

Recognized by: Who's Who Environmental

Registry, 1992 Edition

RESUME

Frank J. Hezoucky Source Sampling Manager Envisage Environmental Inc. 1988 to present

Experience

Streetsboro Fire Department Streetsboro, Ohio Firefighter, Emergency Medical Technician

Portage County Hazmat Team Portage County, Ohio Hazmat Technician

Education

Hocking Technical College Nelsonville, Ohio Associate of Applied Science, 1986 Recreation & Wildlife Management Certified, US Fish & Wildlife Officer

Qualifications/Training

Air Pollution Training Institute Research Triangle Park, NC APTI Course #450

"Source Sampling for Particulate Pollutants" University of Illinois at Chicago April 1990, Certificate awarded

Air Pollution Training Institute Research Triangle Park, NC "APTI #415 - "Control of Gaseous Emissions" Sandusky, Ohio, June 1990, Certificate awarded

Frank Hezoucky Resume - page 2

> Air Pollution Training Institute Research Triangle Park, NC APTI Course #457 "Advanced Source Sampling Workshop" at RTP, N. Carolina, December 1990 Certificate awarded

RESUME

William C. Nixon Jr. Manager, Industrial Hygiene Envisage Environmental Inc. 1989 to present

Previous Experience

Harshaw Chemical Company Technical Service Representative, Health & Safety of Inorganic Fluorides

U.S. Dept. of Labor/OSHA Industrial Hygienist Compliance Officer

Education:

Ohio University, Athens, Ohio Bachelor of Science, Chemistry

OSHA Institute:

Initial Industrial Hygiene
Compliance Course.
Industrial Noise.
Principles of Industrial Ventilation.
Respiratory Protection.
Safety Hazard Recognition.
Accident Investigation.

University of Cincinnati, Institute of Environmental Health, Renewed Annually, Certified Building Inspection Procedures for Asbestos. Certified Management Planner for Asbestos.

William C. Nixon - Resume Page 2

Certifications:

Ohio Department of Health, Certified Asbestos Hazard Evaluation Specialist Re-Certified April, 1991; No. 31527.

University of Cincinnati, Indoor Air Quality, Certificate Awarded, 1991, in Florence, Kentucky.

National Environmental Training Association - Member in good standing.

Recognized by: Who's Who in Environmental Training, 1990-91 Edition.

DRY GAS METER

SPECIFICATION SHEET

Envisage Environmental #001

MANUFACTURER	Rockwell International
SERIAL NUMBER	CL-250
CAPACITY	250 FT³/HR
MAXIUM W. P.	5
PSI	71 S
IDENTIFICATION NUMBER	DD 2790564

ost-it brand lax transmi	ittal memo 7671 # of pages > /
To Fd Price	From B. HOVAN
co. Aukill	CO. ENVISAGE
Dept.	Phone # 5-26 -0550
Fax# 231-9477	Fax # 526-8585

DRY GAS METER CALIBRATION METHOD 2A

Meter Box Number: Rockwell 2790564

Calibration Date: September 1, 1991

$$V = V + 460$$

$$V = V - A60$$

$$V = A60$$

$$V = A60$$

$$V = A60$$

$$V = A60$$

Delta H (^H)	in. H20	0.5	1.0	3.0	5.0	7.0
Pres.Barometer (P) in. Hg	28.96	28.96	28.96	28.96	28.96
Vol.Meter Box (V)	cu. ft.	4.775	6.650	11.451	14.603	17.500
Vol.Test Meter(V _t)	cu. ft.	4.549	6.385	11.016	14.002	16.804
Temp. Meter Box (T	o m	101.8	102.2	107.2	110.5	113.1
	o R	561.8	562.2	567.2	570.5	573.1
Temp. Test Meter (T) F	81.5	81.0	81.0	81.0	81.0
	o R	541.5	541.0	541.0	541.0	541.0
Time (t)	minutes	10.0	10.0	10.0	10.0	10.0
METER FACTOR (Y)		0.987	0.995	1.001	0.998	0.999
- Average				1.00		

USEPA Reference Method 21

Quality Assurance/Quality Control

Envisage Environmental, Incorporated utilizes a Foxboro Organic Vapor Analyzer model 108 (OVA-108) for its leak detection surveys as described by the <u>Code of Federal Regulations</u> reference method 21.

The analyzer is calibrated at the test site prior to the survey. This procedure is used to account for the temperature and barometric pressure differences between the facility location and Envisage Environmental, Inc. office. These parameters can cause differences with the instrument reading. Calibration of the OVA-108 is performed at the beginning and at the conclusion of the test using two concentrations of methane gas; 100 ppm (parts per million) and 10,000 ppm. The use of two concentrations allows a low range and a high range calibration of the instrument. Envisage Environmental, Inc. maintains gas certification sheets on file for the methane calibration gases.

As stated in USEPA reference method 21, an allowable calibration deviation of ten percent of the calibration gas value is adhered to. Any deviation in the post calibration reading is recorded on the survey field sheet. In the advent of a non compliance calibration, the original survey is disregarded and a additional survey is completed.

ANALYSIS CERTIFICATION

METHOD OF PREPARATION: GRAVIMETRIC \ PRESSURE TRANSFILLING MRTHOD OF ANALYSIS : VARIAN 3400 GC(FID) COMP. 3 COMP. 4 COMP. 1 COMP. 2 LOT NO. AIR CH4 & QTY. BALANCE 99PPM BALANCE 0.99% 34965 REQUESTED BY : ON-SITE INSTRUMENTS CUSTOMER PURCHASE ORDER NUMBER : 12119 PACKING LIST NUMBER: 39604 CERTIFICATION DATE : APRIL 01, 1992 ANALYSIS BY : Lab Technician

Chesapeake Drive • P.O. Box 149 a Cambridge, MD 21613 a Telephone; (301) 228-6400

Exhibit D-19 Cont.

BATTERY TEST: Battery charge condition indicated on readout meter. Upon activation of momentary contact switch, a meter reading above the indicator line means that there is 4 hours minimum service life remaining (at 22°C).

FILTERS: In-line sintered metal filters will remove particles larger than 10 microns.

OPERATING TEMPERATURE RANGE: 10°C to 40°C.

MINIMUM AMBIENT TEMPERATURE: 15°C for Flame Ignition (coldstart).
ACCURACY: Based on the use of a cali-

bration gas for each range:

Calibration Temp. °C	Operating Temp. °C	Accuracy in Individual Full Scale
20 to 25	20 to 25	± 20%, 1-10,000 ppm
20 to 25	10 to 40	± 20%, 1-10,000 ppm

RELATIVE HUMIDITY: 5% to 95%, Effect 26% of individual on accuracy: full scale. RECORDER OUTPUT: 0 to 5 volts.
MINIMUM DETECTABLE LIMIT (METHANE):

0.2 ppm STANDARD ACCESSORIES:

- 1. Instrument pacrying and storage case
- 2. Hydrogen fuel filling hose assembly
- 3. Battery charger
- 4. Earphone
 5. Various sampling fixtures close area sampler, tubular sampler
- Maintenance tool kit
 Operators manual (2 each)
- 8. Padded leather carrying straps

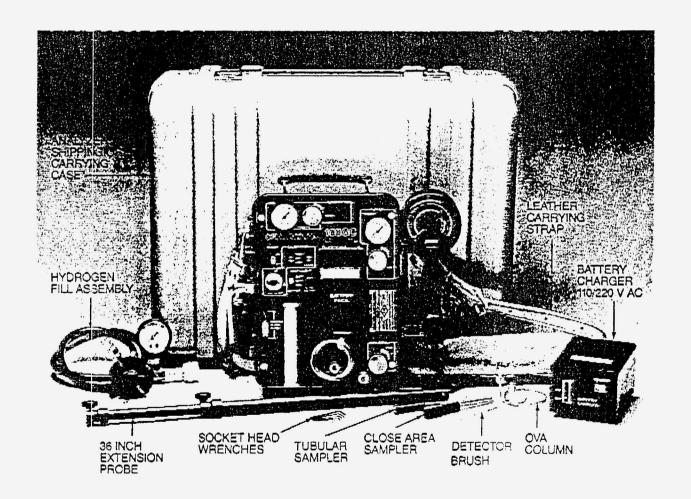


FIGURE 3 OVA-108 ANALYZER COMPONENTS (Gas Chromatograph Model Shown)

Major Features

The basic instrument consists of two major assemblies, the Probe/Readout Assembly and the Side Pack Assembly (See Figure 2). The recorder is optional on all models, but is normally used with all instruments which incorporate the GC Option. The output meter and alarm level adjustments are incorporated in the Probe/Readout Assembly.

The Side Pack Assembly contains the remaining operating controls and indicators, electronic circuitry, detector chamber, hydrogen fuel supply, and electrical power supply.

Other major features are: logarthmic scale readout, approximately two second response time and portable operating time of 8 hours for fuel supply and battery pack. A battery test feature allows charge condition to be read on the meter. Hydrogen flameout is signified by an audible alarm plus a visual indication on the meter. The instrument contains a frequency modulated detection alarm which can be preset to sound at a desired concentration level. The frequency of the detection alarm varies as a function of detected level giving an audible indication of organic vapor concentration. An earphone is provided to allow the operator to hear the alarm in noisy areas or to avoid workers.

During use, the Side Pack Assembly can be carried by the operator on either his left or right side or as a back pack. The Probe/Readout Assembly can be detached from the Side Pack Assembly and disassembled for transport and storage.

Standard Accessories

A variety of sampling probes can be used. In addition, small diameter tubing can be used for remote sampling or electrically insulated flexible extensions can be used for places that are difficult to reach.

Telescoping Probe

Probe length can be increased or decreased over a 22 to 30 inch range to suit the individual user. A knurled locking nut is used to lock the probe at the desired length. The probe is attached to the Readout Assembly. When appropriate, the probe is replaced with a Close Area Sampler, which is supplied as a standard accessory.

Sampling Accessories

Part Number	Description
510125-1	Close area sampler ~ Connects directly to the readout assembly.
CROO9LX	Telescoping probe - Adjustable length - accom- modates the probe listed below.
510126-1	Tubular area sampler Used with the telescoping probe.

Particulate Filters

The primary filter of porous or sintered stainless steel is located behind the sample inlet connector (see Side Pack Assembly drawing). In addition, a replaceable porous metal filter is installed in the "close area" sampler.

Carrying Case

An instrument carrying case is provided to transport, ship and store the disassembled Probe/Readout Assembly, the Side Pack Assembly and other equipment.

Specifications

READOUT: 1-10,000 ppm logarth.
SAMPLE FLOW RATE: 1 1/2 to 2 1/2 litre
per minute at 22°C, 760 mm, using
close area sampler.
RESPONSE TIME: Approximately 2 seconds
for 90% of final reading.
PRIMARY ELECTRICAL POWER: 12 volt (nom-
inal) battery pack.
FUEL SUPPLY: Approximately 75 mL volume
tank of pure hydrogen, maximum pres
sure 2400 psig, fillable in case.
HYDROGEN FLOW RATE: Factory set 12.5
0.5 mL/min (minus GC option) 11.0
0.5 mL/min (GC models).
PORTABLE OPERATING TIME: Minimum 8
hours with battery fully charged,
hydrogen pressure at 1800 psiq.
hydrogen pressure at 1800 psig. PHYSICAL DIMENSIONS: 9" x 12" x 5"
(229 mm x 305 mm x 127 mm) Side-
pack only.
WEIGHT: 12 pounds (5.5 kg)
(sidepack and hand-held probe as-
sembly).
DETECTION ALARM: Audible alarm plus
meter indication. User preset to

desired level.

FLAME-OUT ALARM: Audible alarm plus

meter indication (needle drops off scale in negative direction).

HUKILL CHEMICAL CORPORATION øF.Λ. \AIRPERM\PROCVENT Rev. 12/26/90 CONSERV. **VENT** SAMPLE POINT REMOVED 2. PIPE CONSERV. **VENT** BATCH STILL VENT TANK -5.bibE PENT -UNION SAMPLE POINT REMOVED 2' PIPE LUVA **VENT** K.O. ROOF DECK **ROOF** COND. LINE --

LUWAS VENT

BATCH STILL VENT

TEST LOCATIONS FOR COMPLIANCE WITH ORGANIC AIR EMISSION REGS

Location of equipment subject to Subpart BB for leak detection monitoring. Plot Plan Location numbers correspond to the Legend numbers located on the "FACILITY OPERATING AREA PLOT PLAN", Figure D-12. "Cam-lock ftq." is a type of quick-coupled "H.W." refers to Hazardous Waste. connector adjacent to the valve. PLOT EQUIPMENT PLAN I.D. LOCATION NUMBER **EQUIPMENT DESCRIPTION** _____ Batch Distillation Unit Area 1 Equipment in contact with H.W. for this unit is in the Reboiler Area None See Location 7. 2 Luwa Thin Film Evaporator Unit No. LN430 Area Positive displacement feed pump with packing seal. PFLN430 Positive displacement discharge pump with packing seal. PBLN430 UBLN430A 2 inch ball value on line to V-117 Bottoms Tank UBLN430B 2 inch ball value on line to U-110M tank. 2 inch ball valve & cam-lock ftq. on line to system drain drum. UBLN430C 2 inch ball valve & cam-lock ftq. on pipe rack in line from V-6000 tank. VFV6000 2 inch ball valve & cam-lock ftq. on pipe rack in line from V-4000 tank. VFV4000 2 inch ball valve & cam-lock ftq. on pipe rack in line from East Feed tank. UFEAST 2 inch ball valve & cam-lock ftq. on pipe rack in line from West Feed tank. UFWEST 2 inch ball valve & cam-lock ftq. on pipe rack in line from U-110M tank. UFU110M 2 inch ball valve & cam-lock ftq. on pipe rack in line from V-210M tank. **UFU210M** Luwa Thin Film Evaporator Unit No. LN500 Area 3 Positive displacement feed pump with packing seal. PFLN500 **VFLN500** 2 inch ball valve & cam-lock fitting on pump discharge line. Luwa systems' backwash solution circulation line 2 " ball valve. UBw PBLN500 Positive displacement discharge pump with packing seal. UBLN500A 2 inch ball value on line to V-117 Bottoms Tank UBLN500B 2 inch ball valve on line to V-110M tank. VBLN500C 2 inch ball valve & cam-lock ftq. on line to system drain drum. East Pad H.W. Storage Tank Dike Area 2 inch ball valve & cam-lock ftq. from U-114 H.W. storage tank at edge of dike. UDU114 UDU214 2 inch ball valve & cam-lock ftq. from V-214 H.W. storage tank at edge of dike. 2 inch ball valve & cam-lock ftg. from V-314 H.W. storage tank at edge of dike. UDU314

Table D-3 - Equ

APPENDIX A

INSPECTION LOG SHEETS

INSPECTION LOG SHEET - A Operating, Structural Equip & Tank Storage Area X - not present

DATE:		÷	MILITARY	TIME:	 Cond	ition
INSPECTED	BY:				•	operable in need of maint.
COMMENTS :				-	x -	operable un-operable

-See back for details-

ITEM	STATUS	CONDITION	OBSERVATIONS	CORRECTIVE ACTION TAKEN	CORRECTIVE ACTION DATE SIGNED
Sumps					
Pump					
Ramp	-				
Dike					
Foundation					
Holding Tanks					
Piping					
Supports	,				
Spent Acid Tank					
Pump	•			•	
Dike					
Foundation		i, ·	. * .		
Tank					
Piping					
Supports					
Spray Booth					
		·			
				•	

Area/Equipment	Items Inspected	Conditions
Operating and		
Structural equipment	Sump areas	Erosion, uneven settlement, cracks and spalling in concrete, wet spots
	Pump	Power, clogging
	Ramps	Erosion, uneven settlement, cracks and spalling in concrete
	Dikes	Cracks, deterioration
	Bases or foundation	Erosion; uneven settlement; cracks and spalling in concrete pads, base rings
		and piers; deterioration of water seal between tank bottom and foundation,
<u>.</u>		wet spots.
•	. *	
Area/Equipment	Items Inspected	Conditions
Tank Storage Area	Holding tanks	Corrosion, discoloration, cracks, buckles, and bulges
	Piping to holding tanks	Loss of metal thickness, leaks, corrosion or deterioration
	Tank structurál supports	Concrete deterioration and corrosion of pipe supports
	Paint Spray Booth	Sprinkler Head, filter condition, air flow
··· ··· ·	-	
-		
	. l	

INSPECTION LOG SHEET - B Operating, Structural Equip & Tank Storage Area X - not present

DATE:	·	MILITARY	TIME:		dition
INSPECTED	BY:	<u> </u>			operable in need of maint.
COMMENTS :				x -	operable un-operable

-See back for details-

ITEM	STATUS	CONDITION	OBSERVATIONS	CORRECTIVE ACTION TAKEN	CORRECTIVE ACTION DATE SIGNED
Base					
Sump					
Dike					
Pumps	· · ·	·			
Debris Pallets					
Waste Segregation					
Containers:			·		
Stacking		,			
Sealing					
Labeling	•.				
Condition					
Ramps					
Warning Signs					
Shar Mixer					
Catwalk Hydraulic Systems		•			
Raw Materials			·		:
Leaks					
Smills					

*	·	
Area/Equipment	Items Inspected	Conditions
Container Storage Area	Container placement and stacking	Aisle space, height of stack
	Sealing of containers	Open lids
•	Labeling of containers	Improper identification, dat missing
	Containers	Corrosion, leakage, structur defects
•	Ramps	Cracks, spalling, uneven settlement, erosion
	Warning signs	Damaged
	. Base or foundation	Cracks, spalling, uneven settlement, erosion, wet spots
	Sump area	Cracks, spalling, uneven settlement, erosion, wet spots
	Dikes	Cracks, deterioration
	Pumps (automatic)	Setting adjustment, power, clogging, leakage
to a second of the second of t	Debris and refuse	Clog sump pump, aesthetics, possible reaction with leaks
en e	Pallets	Damaged (e.g., broken wood, warping, nails missing)
	Segregation of incompatible wastes	Storage of incompatible wastes in area
**************************************	Shar Mixer	hydraulic system, is in operation condition
	Hydraulic System Raw Materials	Is in operating condition Stacked Properly/No spilled material
	Leaks	No leaking of Hazardous Wast

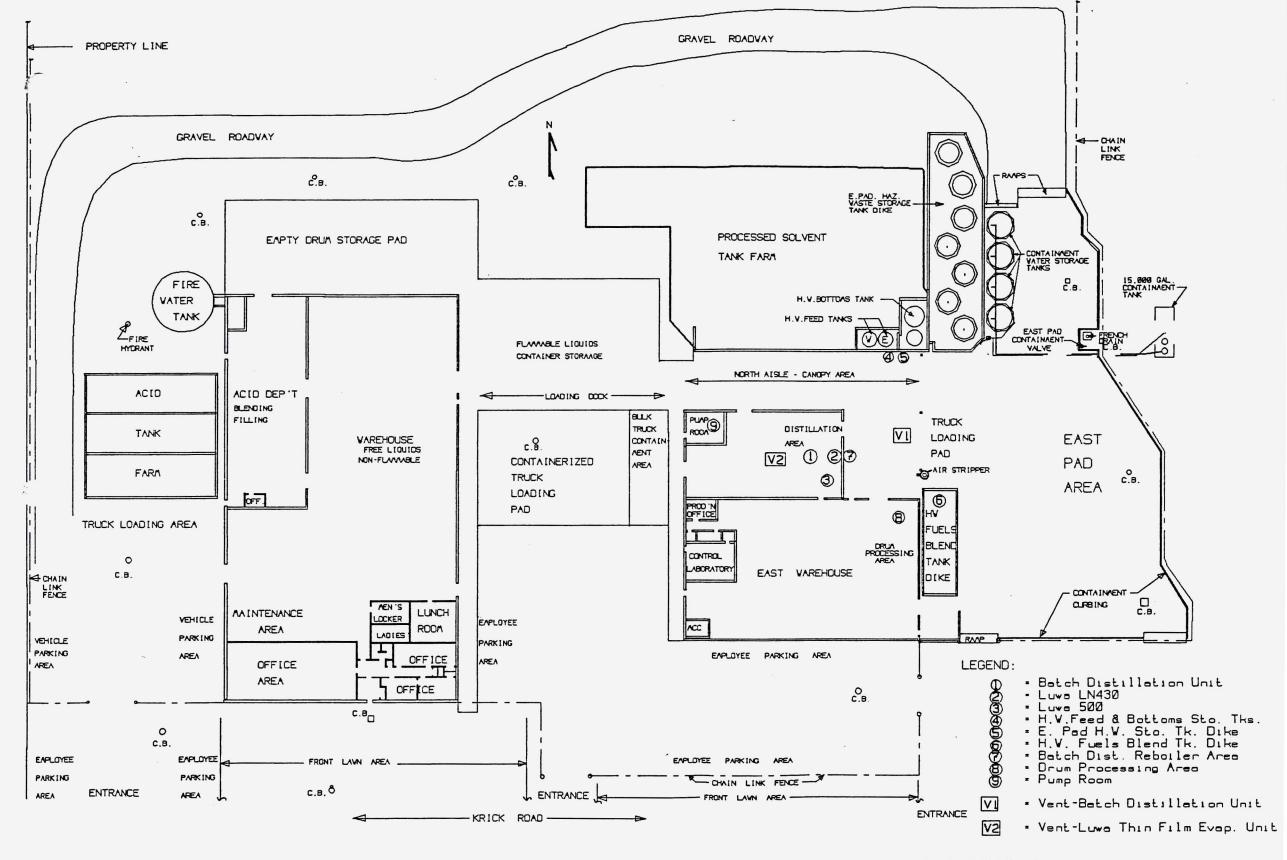
Spills

Containers

APPENDIX A, INSPECTION LOG SHEET B, PAGE 2

No spills of Hazardous Waste:

Containers are covered and


in good condition

HUKILL CHEMICAL CORPORATION INSPECTION SCHEDULE

AREA / EQUIPMENT	ITEM INSPECTED	CONDITION	FREQUENCY
Operating and Structural Equipment	Sump Areas	Erosion, uneven settlement, cracks spalling in concrete, wet spots	Weekly
	Pump	Power, clogging, leaking, excessive	
	Ramps	noise, frayed electrical cord Erosion, uneven settlement, cracks	Weekly Weekly
	Dikes Bases or foundations	spalling in concrete Deterioration, cracks Erosion, uneven settlement, cracks and spalling in concrete pads, base rings and piers, deterioration of wat seal between tank bottom and foundati	
		wet spots	.011
Tank Storage Areas	Holding tanks	Corrosion, discoloration, cracks, buckles, bulges, small leaking	Daily
	Piping	Loss of Metal thickness, leaks, corrosion or deterioration, bends or kinks	Daily
	Valves and fittings	Leaking, leaking packing, caps on fittings, fittings out of round, tabs are on quick connect caps	Daily
	Tank Structural Supports	Concrete deteriora, cracking corrosion of pipe supports	Daily
Container Storage Areas	Base or Foundation	Cracks, spalling, uneven settlement erosion, wet spots	Weekly
	Sump area	Cracks, spalling, uneven settlement erosion, wet spots	Weekly
	Dikes Debris and refuse	Cracks, deterioration Clogged catch basin grating,	Weekly
	Pallets	aesthetics, possible reaction with le Damaged (broken wood, warping or	eaks Daily
		nails missing	Weekly

HUKILL CHEMICAL CORPORATION INSPECTION SCHEDULE

AREA / EQUIPMENT	ITEM INSPECTED	CONDITION	FREQUENCY
Container Storage Area	Segregation of	Storage of incompatible wastes	
-	incompatible wastes	in area	Weekly
Continued	Container placement	Aisle space, stack height	Weekly
	Sealing of containers	Open lids, leaks	Weekly
	Labeling of containers	Improper identification, date missing	Weekly
	Containers	Corrosion, leakage structural defects	Weekly
	Ramps	Cracks, spalling, uneven settlement, erosion	Weekly
	Warning Signs	Damaged, illegible	Weekly
Tanker Load/Unload Area			
9	Dock surface	Spills not cleaned	Daily
•	Hoses	Area clear of hoses	Daily
	Tools	Area clear of tools	Daily
	Pumps	Not leaking, electric cords	Daily
	Absorbent	Sufficient amount located nearby for spill containment	Daily
Security Devices			
	Fence	Intact	Weekly
	Gates	Won't open and close	Daily
	Night Lights	Burned out	Daily
	Alarm	Check circuit test	Daily
Monitoring	Tank Level Gauges	Dirty, not floating, freeze	Daily
	High level alarm	Check sensitivity, annunciator, alarm	Daily
	Water table level	Flooding	Daily

FACILITY OPERATING AREA PLOT PLAN

FIGURE D-12

HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD. BEDFORD. OH 44146 EPA I.D. NO. OHD001926740

\SITEDMOS\ORGAIREA.DVG Rev. 12/19/91 Scale: 1 • 50